本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
《深度学习入门:基于PyTorch和TensorFlow的理论与实现/人工智能与大数据系列》是一本系统介绍深度学习基础知识和理论原理的入门书籍。《深度学习入门:基于PyTorch和TensorFlow的理论与实现/人工智能与大数据系列》从神经网络的基本结构入手,详细推导了前向传播与反向传播的数学公式和理论支持,详细介绍了如今各种优化神经网络的梯度优化算法和正则化技巧,给出了在实际应用中的超参数调试和网络训练的技巧。同时,也介绍了典型的卷积神经网络(CNN)和循环神经网络(RNN)。除了介绍理论基础外,《深度学习入门:基于PyTorch和TensorFlow的理论与实现/人工智能与大数据系列》以Python为基础,详细介绍了如今主流的深度学习框架PyTorch和TensorFlow,并分别使用这两种框架来构建相应的项目,帮助读者从理论和实践中提高自己的深度学习知识水平。
红色石头,北京大学硕士,数据科学与人工智能高级研发工程师,CSDN博客专家。擅长机器学习、深度学习算法理论,实战经验丰富。个人风格是擅长使用通俗易懂的语言深入浅出地讲解深度学习算法理论和知识点。累计发布原创文章200多篇。开设过GitChat达人课,开办过机器学习实战训练营,服务读者近5000人。