作者简介
TomWhite是杰出的Hadoop专家之一。自2007年2月以来,TomWhite一直是ApacheHadoop的提交者(committer),也是Apache软件基金会的成员。Tom是Cloudera的软件工程师,他是Cloudera的首批员工,对Apache和Cloudera做出了举足轻重的贡献。在此之前,他是一名独立的Hadoop顾问,帮助公司搭建、使用和扩展Hadoop。他是很多行业大会的专题演讲人,比如ApacheCon、OSCON和Strata。Tom在英国剑桥大学获得数学学士学位,在利兹大学获得科学哲学硕士学位。他目前与家人居住在威尔士。
译者简介
王海博士,解放军理工大学通信工程学院教授,博导,教研中心主任,长期从事无线自组网网络的设计与研发工作,主持国家自然科学基金、国家863计划课题等多项课题,近5年获军队科技进步二等奖1项,三等奖6项,作为di一发明人申请国家发明专利十余项,发表学术论文50余篇。
华东博士,现任南京医科大学计算机教研室教师,一直致力于计算机辅助教学的相关技术研究,陆续开发了人体解剖学网络自主学习考试平台、诊断学自主学**台和面向执业医师考试的预约化考试平台等系统,并在各个学科得到广泛的使用,获得全国高等学校计算机课件评比一等奖和三等奖各一项。主编、副主编教材两部,获发明专利一项、软件著作权多项。
刘喻博士,长期从事软件开发、软件测试和软件工程化管理工作,目前任教于清华大学软件所。
吕粤海,长期从事军事通信网络技术研究与软件开发工作,先后通过华为光网络高级工程师认证、思科网络工程师认证。
数据算法:Hadoop/Spark大数据处理技巧
内容简介:
《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。
主要内容包括:
■ 完成超大量交易的购物篮分析。
■ 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。
■ 使用超大基因组数据完成DNA和RNA测序。
■ 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。
■ 推荐算法和成对文档相似性。
■ 线性回归、Cox回归和皮尔逊(Pearson)相关分析。
■ 等位基因频率和DNA挖掘。
■ 社交网络分析(推荐系统、三角形计数和情感分析)。 Spark高级数据分析
本书是使用Spark进行大规模数据分析的实战宝典,由大数据公司Cloudera的数据科学家撰写。四位作者首先结合数据科学和大数据分析的广阔背景讲解了Spark,然后介绍了用Spark和Scala进行数据处理的基础知识,接着讨论了如何将Spark用于机器学习,同时介绍了常见应用中几个常用的算法。此外还收集了一些更加新颖的应用,比如通过文本隐含语义关系来查询Wikipedia或分析基因数据。