书籍详情
《人工智能数学基础知识书籍深度学习的数学数据统计分析机器学习方法ai算法线性代数统计学模型贝叶斯》[55M]百度网盘|亲测有效|pdf下载
  • 人工智能数学基础知识书籍深度学习的数学数据统计分析机器学习方法ai算法线性代数统计学模型贝叶斯

  • 出版社:芝麻开门图书专营店
  • 热度:10923
  • 上架时间:2024-06-30 09:38:03
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍

b94183ed0f7911c9.jpg
内容介绍

《深度学习的数学》基于丰富的图示和具体示例,通俗易懂地介绍了深度学习相关的数学知识。

第1章介绍神经网络的概况;

第2章介绍理解神经网络所需的数学基础知识;

第3章介绍神经网络的优化;

第4章介绍神经网络和误差反向传播法;

第5章介绍深度学习和卷积神经网络。

书中使用Excel进行理论验证,帮助读者直观地体验深度学习的原理。

● 本书的目的在于提供理解神经网络所需的数学基础知识。为了便于读 者直观地理解,书中使用大量图片,并通过具体示例来介绍。因此, 本书将数学的严谨性放在第二位。

● 深度学习的世界是丰富多彩的,本书主要考虑阶层型神经网络和卷积 神经网络在图像识别中的应用。

● 本书将Sigmoid 函数作为激活函数,除此之外也可以考虑其他函数。 ● 本书以小二乘法作为数学上的优化的基础,除此之外也可以考虑 其他方法。

● 神经网络可分为有监督学习和无监督学习两类。本书主要讲解有监督 学习。

● 人工智能相关的文献之所以难读,其中一个原因就是各文献所用的符 号不统一。本书采用的是相关文献中常用的符号。

● 本书使用Excel 进行理论验证。Excel 是一个非常的工具,能够在 工作表上可视化地展现逻辑,有助于我们理解。因此,相应的项目需 要以Excel 的基础知识为前提。


目录


第 1 章 神经网络的思想
1 - 1 神经网络和深度学习 2
1 - 2 神经元工作的数学表示 6
1 - 3 激活函数:将神经元的工作一般化 12
1 - 4 什么是神经网络 18
1 - 5 用恶魔来讲解神经网络的结构 23
1 - 6 将恶魔的工作翻译为神经网络的语言 31
1 - 7 网络自学习的神经网络 36
第 2 章 神经网络的数学基础
2 - 1 神经网络所需的函数 40
2 - 2 有助于理解神经网络的数列和递推关系式 46
2 - 3 神经网络中经常用到的Σ符号 51
2 - 4 有助于理解神经网络的向量基础 53
2 - 5 有助于理解神经网络的矩阵基础 61
2 - 6 神经网络的导数基础 65
2 - 7 神经网络的偏导数基础 72
2 - 8 误差反向传播法必需的链式法则 76
2 - 9 梯度下降法的基础:多变量函数的近似公式 80
2 - 10 梯度下降法的含义与公式 83
2 - 11 用Excel 体验梯度下降法 91
2 - 12 优化问题和回归分析 94
第3 章 神经网络的*优化
3 - 1 神经网络的参数和变量 102
3 - 2 神经网络的变量的关系式 111
3 - 3 学习数据和正解 114
3 - 4 神经网络的代价函数 119
3 - 5 用Excel体验神经网络 127
第4 章 神经网络和误差反向传播法
4 - 1 梯度下降法的回顾 134
4 - 2 神经单元误差 141
4 - 3 神经网络和误差反向传播法 146
4 - 4 用Excel体验神经网络的误差反向传播法 153
第5 章 深度学习和卷积神经网络
5 - 1 小恶魔来讲解卷积神经网络的结构 168
5 - 2 将小恶魔的工作翻译为卷积神经网络的语言 174
5 - 3 卷积神经网络的变量关系式 180
5 - 4 用Excel体验卷积神经网络 193
5 - 5 卷积神经网络和误差反向传播法 200
5 - 6 用Excel体验卷积神经网络的误差反向传播法 212
附录
A 训练数据(1) 222
B 训练数据(2) 223
C 用数学式表示模式的相似度 225


作者介绍


涌井良幸(作者) 1950年生于东京,毕业于东京教育大学(现筑波大学)数学系,现为自由职业者。著有《用Excel学深度学习》(合著)、《统计学有什么用?》等。

涌井贞美(作者) 1952年生于东京,完成东京大学理学系研究科硕士课程,现为自由职业者。著有《用Excel学深度学习》(合著)、《图解贝叶斯统计入门》等。 杨瑞龙(译者) 1982年生,2008年北京大学数学科学学院硕士毕业,软件开发者,从事软件行业10年。2013年~2016年赴日工作3年,从2016年开始在哆嗒数学网公众号发表《数学上下三万年》等多篇翻译作品。 


关联推荐


一本书掌握深度学习的数学基础知识

在线试读


前言

近年来,我们在媒体上到处可见人工智能(AI)这个词,而深度学习是人工智能的一种实现方法。下面我们就来简单地看一下深度学习具有怎样划时代的意义。

下面是三张花的图片,它们都具有同一个名字,那究竟是什么呢?

答案是玫瑰。虽然大小和形状都不一样,但这些的确都是玫瑰花的图片。看到玫瑰花的图片,我们理所当然就能辨别出“这是玫瑰花”。

在计算机和数学的世界中,这个玫瑰花的例子属于模式识别问题。人类每天都在进行着模式识别。比如,我们在逛街的时候就会无意识地进行着物体的辨别:“那是电影院”“信号灯是红灯”,等等。换言之,这就是在进行模式识别。

然而,像这样的人类认为很自然的事情,一旦想让机器来做,就变得非常困难。例如,现在让你编写一个模式识别的计算机程序,使其从大量花的图片中单独提取出玫瑰花的图片,你可能就束手无策了。

实际上,关于模式识别的理论创建一直在碰壁。例如,对于玫瑰花的模式识别,以前的逻辑是将“玫瑰是具有这样特征的东西”教给机器,然而效果甚微。因为玫瑰花的形状实在是太多了,即使是相同品种的玫瑰花,其颜色和形状每时每刻也都在发生变化,不同品种的玫瑰花则会有更大的差异。要从如此多样的特征之中得出“玫瑰”这样一个概念,的确是太难了。

后来,一种被称为神经网络的数学方法被研究出来。具体来说,就是将模拟动物的神经细胞的神经元聚集起来形成网络,然后让这个网络去观察大量的玫瑰花的图片,进行“自学习”。相比之前的模式识别逻辑,该方法取得了很大的成功。特别是利用称为卷积神经网络的多层结构的神经网络,甚至可以从图片和视频中识别出人和猫。深度学习就是用具有这种结构的神经网络实现的人工智能。

虽然“自学习”听起来很难,但神经网络运用的数学理论是非常简单的,基本上是比较基础的数学知识。然而,很多文献大量使用公式和术语,令人难以看透神经网络的本质,这对于今后人工智能的发展是莫大的不幸和障碍。本书作为人工智能的入门书,目的就是要破除这种障碍,让所有人都能够体会到神经网络的趣味性。本书的目标是用初级的数学知识详细地讲解深度学习的思想。

只要从本质上理解了基础知识,就可以在应用中大展身手。但愿本书能够对 21 世纪人工智能的发展有所贡献。

后,本书从策划到终出版,得到了技术评论社渡边悦司先生的大力支持,我们借此向他表达深深的谢意。

2017 年春

笔者

^_^:6d21aca8d2035fbc89488783eae74331