书籍详情
《强化学习算法入门实战机器学习中的分类和回归人工智能丛书python深度学习机器学习大模型强化学习的数学原理教程自然语言处理》[57M]百度网盘|亲测有效|pdf下载
  • 强化学习算法入门实战机器学习中的分类和回归人工智能丛书python深度学习机器学习大模型强化学习的数学原理教程自然语言处理

  • 出版时间:2024-01
  • 热度:11666
  • 上架时间:2024-06-30 09:38:03
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍

产品特色

编辑推荐

本书读者对象:大中专院校计算机、人工智能相关专业学生,对机器学习、强化学习算法感兴趣的程序员。


● 本书从初高中学生都熟悉的“平均值计算”的角度出发,简单易懂地解释复杂的强化学习原理。

● 使用常见的例子(多臂老虎机问题和网格世界问题)对各种算法进行比较,使它们的特点更易理解。

● 对于强化学习的核心算法,提供了Python 3和MATLAB两种类型的代码。执行代码,可直观理解“原理 → 公式 → 程序”这一系列流程。


内容简介

作为第一个战胜围棋世界冠军的人工智能机器人AlphaGo,我们知道其主要工作原理是深度学习。随着AlphaGo Zero和Alpha Zero的相继发布,作为机器学习经典算法之一的强化学习,在人工智能领域受到了更多的关注。

《强化学习算法入门》使用通俗易懂的语言,按照“原理-公式-程序”的方式,对强化学习的基础知识进行了详细讲解。书中先让大家从熟悉的“平均值计算”作为切入点,学习强化学习的基本概念,然后结合实例学习了函数近似方法、深度强化学习的原理和方法等,比较了各算法的特点和应用,并用Python和MATLAB两种语言进行了编程实现。

《强化学习算法入门》内容丰富,实践性强,特别适合高校人工智能相关专业学生,机器学习、深度学习工程师等学习强化学习算法。


作者简介

[日] 曾我部东马

理学博士(物理学专业)。曾任马克斯·普朗克研究所(德国)博士研究员、剑桥大学(英国)研究员。2009年回到日本,参与创立了Grid公司,担任董事兼首席技术官。2011年起先后担任东京大学尖端科学技术研究中心特聘助理教授、特聘副教授。2016年3月起任电气通信大学副教授,同时兼任Grid公司首席技术顾问、东京大学尖端科学技术研究中心客座研究员至今。

他以开发具有“深度学习—深度强化学习—回归预测—优化”功能的跨功能机器学习框架∞ReNom而闻名,目前在开发以量子机器学习为代表的最先进量子算法∞ReNomQ的同时,还致力于使用深度强化学习的“在线优化问题”的研究。