本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
《机器学习实战:基于Scikit-Learn、Keras和TensorFlow(原书第2版)》
这本机器学习畅销书基于TensorFlow2和Scikit-Learn的新版本进行了全面更新,通过具体的示例、非常少的理论和可用于生产环境的Python框架,从零帮助你直观地理解并掌握构建智能系统所需要的概念和工具。
全书分为两部分。部分介绍机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分介绍神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。
通过本书,你会学到一系列可以快速使用的技术。每章的练习可以帮助你应用所学的知识,你只需要有一些编程经验。所有代码都可以在GitHub上获得。
《机器学习实战:模型构建与应用》
本书主要包括两部分。第1部分(第1章-第11章)讲解了如何使用TensorFlow来创建不同应用场景的机器学习模型。该部分介绍TensorFlow、计算机视觉、自然语言处理和序列建模。第二部分(第12章-第20章)将引导你了解如何将模型置于Android和iOS上的用户手中、使用JavaScript的浏览器以及通过云提供服务的场景。
AurelienGeron是机器学习方面的顾问。他曾就职于Google,在2013年到2016年领导过YouTube视频分类团队。他是Wifirst公司的创始人并于2002年至2012年担任该公司的首席技术官。2001年,他创办Ployconseil公司并任首席技术官。