书籍详情
《Python图像处理实战python机器学习书籍》[52M]百度网盘|亲测有效|pdf下载
  • Python图像处理实战python机器学习书籍

  • 出版社:华文乐章图书专营店
  • 热度:11774
  • 上架时间:2024-06-30 09:38:03
  • 价格:0.0
书籍下载
书籍预览
免责声明

本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正

内容介绍




Python图像处理实战
作者:[印度]桑迪潘·戴伊(Sandipan Dey)
出版社:人民邮电出版社
出版时间:2020年12月 
定价89元
ISBN:9787115527684





本书介绍如何用流行的Python 图像处理库、机器学习库和深度学习库解决图像处理问题。先介绍经典的图像处理技术,然后探索图像处理算法的演变历程,始终紧扣图像处理以及计算机视觉与深度学习方面的*进展。全书共12 章,涵盖图像处理入门基础知识、应用导数方法实现图像增强、形态学图像处理、图像特征提取与描述符、图像分割,以及图像处理中的经典机器学习方法等内容。

本书适合Python 工程师和相关研究人员阅读,也适合对计算机视觉、图像处理、机器学习和深度学习感兴趣的软件工程师参考。





桑迪潘·戴伊(Sandipan Dey)是一位兴趣广泛的数据科学家,主要研究机器学习、深度学习、图像处理和计算机视觉,曾在推荐系统、行业动态预测模型、传感器定位模型、情感分析和设备预测等众多数据科学领域工作过。桑迪潘·戴伊拥有美国马里兰大学计算机科学硕士学位,在IEEE 数据挖掘会议和期刊上发表了数篇学术论文,并在数据科学、机器学习、深度学习、图像处理及相关课程/专业等方面获得了100 多个慕课(mooc)学习认证。他经常在博客空(sandipanweb)撰写博客,是机器学习教育爱好者。




1 章 图像处理入门 1

1.1 什么是图像处理及图像处理的应用 2

1.1.1 什么是图像以及图像是如何存储的 2

1.1.2 什么是图像处理 4

1.1.3 图像处理的应用 4

1.2 图像处理流程 4

1.3 在Python 中安装不同的图像处理库 6

1.3.1 安装pip 6

1.3.2 在Python 中安装图像处理库 6

1.3.3 安装Anaconda 发行版 7

1.3.4 安装Jupyter 笔记本 7

1.4 使用Python 进行图像输入/输出和显示 8

1.4.1 使用PIL 读取、保存和显示图像 8

1.4.2 使用matplotlib 读取、保存和显示图像 10

1.4.3 使用scikit-image 读取、保存和显示图像 12

1.4.4 使用SciPy 的misc 模块读取、保存和显示图像 14

1.5 处理不同的文件格式和图像类型,并执行基本的图像作 15

1.5.1 处理不同的文件格式和图像类型 16

1.5.2 执行基本的图像作 20

小结 38

习题 39

拓展阅读 40

2 章 采样、傅里叶变换与卷积 41

2.1 图像形成—采样和量化 42

2.1.1 采样 42

2.1.2 量化 48

2.2 离散傅里叶变换 51

2.2.1 为什么需要DFT 51

2.2.2 用快速傅里叶变换算法计算DFT 51

2.3 理解卷积 56

2.3.1 为什么需要卷积图像 57

2.3.2 使用SciPy 信号模块的convolve2d 函数进行卷积 57

2.3.3 使用SciPy 中的ndimage.convolve 函数进行卷积 61

2.3.4 相关与卷积 62

小结. 66

习题. 66

3 章 卷积和频域滤波 67

3.1 卷积定理和频域高斯模糊 67

3.2 频域滤波 75

3.2.1 什么是滤波器 75

3.2.2 高通滤波器 76

3.2.3 低通滤波器 81

3.2.4 DoG 带通滤波器 87

3.2.5 带阻(陷波)滤波器 88

3.2.6 图像复原 90

小结 98

习题 98

4 章 图像增强 99

4.1 逐点强度变换—像素变换 100

4.1.1 对数变换 101

4.1.2 幂律变换 103

4.1.3 对比度拉伸 104

4.1.4 二值化 108

4.2 直方图处理—直方图均衡化和直方图匹配 112

4.2.1 基于scikit-image 的对比度拉伸和直方图均衡化 113

4.2.2 直方图匹配 117

4.3 线性噪声平滑 120

4.3.1 PIL 平滑 120

4.3.2 基于SciPy ndimage 进行盒核与高斯核平滑比较 124

4.4 非线性噪声平滑 124

4.4.1 PIL 平滑 125

4.4.2 scikit-image 平滑(去噪) 127

4.4.3 SciPy ndimage 平滑 131

小结 132

习题 133

5 章 应用导数方法实现图像增强 134

5.1 图像导数—梯度和拉普拉斯算子 134

5.1.1 导数与梯度 135

5.1.2 拉普拉斯算子 138

5.1.3 噪声对梯度计算的影响 140

联系我们:ebook666@outlook.com