《大规模并行处理器程序设计大卫·B.柯克,》[46M]百度网盘|pdf下载|亲测有效
《大规模并行处理器程序设计大卫·B.柯克,》[46M]百度网盘|pdf下载|亲测有效

大规模并行处理器程序设计大卫·B.柯克, pdf下载

出版社 汇天万通图书专营店
出版年 2025
页数 390页
装帧 精装
评分 8.7(豆瓣)
8.99¥ 10.99¥

内容简介

本篇主要提供大规模并行处理器程序设计大卫·B.柯克,电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com

店铺公告:

01 本店书籍都是正版书籍,请放心购买。

02 店内部分书籍为绝版稀缺书,因进货和保存成本较高,故售价高于当年出版的定价(书籍封面尾页的定价),请务必注意书籍价格问题,避免争议,由于书籍数量庞大,分拣查书比较耗时,快递发出后大概3-5天左右可以收到商品。

03 关于书籍品相问题,仓库发货前会与您联系确定发货,如联系不到您会先为您发货,收到书籍后有任何问题可随时了联系在线客服。

04 购书实乃雅事,有任何问题都可联系客服为您解决。小店经营不易,请不要轻易差评,望您理解,谢谢。

05 本店开具电子发票,请确认收货后联系客服提供开票资料,工作人员将及时为您开具电子发票。

基本信息

书名:大规模并行处理器程序设计(英文版 原书第3版)

定价:139.00元

作者:大卫·B.柯克(DavidB.Kirk),胡文美(Wen-mei

出版社:机械工业出版社

出版日期:2020-11-01

ISBN:9787111668367

字数:

页码:568

版次:3

装帧:其他

开本:16开

商品重量:0.4kg

编辑推荐


内容提要


本书介绍并行编程和GPU架构的基本概念,详细探索了构建并行程序的各种技术,涵盖性能、浮点格式、并行模式和动态并行等主题,适合专业人士及学生阅读。书中通过案例研究展示了开发过程,从计算思维的细节着手,终给出了高效的并行程序示例。新版更新了关于CUDA的讨论,包含CuDNN等新的库,同时将不再重要的内容移到附录中。新版还增加了关于并行模式的两个新章节,并更新了案例研究,以反映当前的行业实践。

目录


Preface Acknowledgements 

CHAPTER.1 Introduction.................................................................................1 

1.1 Heterogeneous Parallel Computing................................................2 

1.2 Architecture of a Modern GPU.......................................................6 

1.3 Why More Speed or Parallelism?...................................................8 

1.4 Speeding Up Real Applications....................................................10 

1.5 Challenges in Parallel Programming ............................................12 

1.6 Parallel Programming Languages and Models.............................12 

1.7 Overarching Goals........................................................................14 

1.8 Organization of the Book..............................................................15 

References ............................................................................................18 

CHAPTER.2 Data Parallel Computing.......................................................19 

2.1 Data Parallelism............................................................................20 

2.2 CUDA C Program Structure.........................................................22 

2.3 A Vector Addition Kernel .............................................................25 

2.4 Device Global Memory and Data Transfer...................................27 

2.5 Kernel Functions and Threading...................................................32 

2.6 Kernel Launch...............................................................................37 

2.7 Summary.......................................................................................38 

Function Declarations...................................................................38 

Kernel Launch...............................................................................38 

Built-in (Predefined) Variables .....................................................39 

Run-time API................................................................................39 

2.8 Exercises.......................................................................................39 

References ............................................................................................41 

CHAPTER.3 Scalable Parallel Execution................................................43 

3.1 CUDA Thread Organization.........................................................43 

3.2 Mapping Threads to Multidimensional Data................................47 

3.3 Image Blur: A More Complex Kernel ..........................................54 

3.4 Synchronization and Transparent Scalability ...............................58 

3.5 Resource Assignment....................................................................60 

3.6 Querying Device Properties..........................................................61 

3.7 Thread Scheduling and Latency Tolerance...................................64 

3.8 Summary.......................................................................................67 

3.9 Exercises.......................................................................................67 

CHAPTER.4 Memory and Data Locality ...................................................71 

4.1 Importance of Memory Access Efficiency....................................72 

4.2 Matrix Multiplication....................................................................73 

4.3 CUDA Memory Types..................................................................77 

4.4 Tiling for Reduced Memory Traffic..............................................84 

4.5 A Tiled Matrix Multiplication Kernel...........................................90 

4.6 Boundary Checks..........................................................................94 

4.7 Memory as a Limiting Factor to Parallelism................................97 

4.8 Summary.......................................................................................99 

4.9 Exercises...........................................

作者介绍


大卫·B. 柯克(David B. Kirk) 美国国家工程院院士,NVIDIA Fellow,曾任NVIDIA公司首席科学家。他领导了NVIDIA图形技术的开发,并且是CUDA技术的创始人之一。2002年,他荣获ACM SIGGRAPH计算机图形成就奖,以表彰其在把高性能计算机图形系统推向大众市场方面做出的杰出贡献。他拥有加州理工学院计算机科学博士学位。

胡文美(Wen-mei W. Hwu) 美国伊利诺伊大学厄巴纳-香槟分校电气与计算机工程系AMD Jerry Sanders讲席教授,并行计算研究中心首席科学家,领导IMPACT团队和CUDA中心的研究工作。他在编译器设计、计算机体系结构、微体系结构和并行计算方面做出了贡献,是IEEE Fellow、ACM Fellow,荣获了包括ACM SigArch Maurice Wilkes Award在内的众多奖项。他还是MulticoreWare公司的联合创始人兼CTO。他拥有加州大学伯克利分校计算机科学博士学位。

文摘


序言