本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
√ 快:跨技术实践|管理决策视角,历数业界优选案例|工具,帮助非算法出身工程师快速搭建起可用系统。
√ 通:旨在实现决策|架构|安全|运营无障碍沟通,覆盖产品|算法|工程|团队|个人成长|思维模式|问题类型。
√ 全:纵向系统剖析推荐算法模型,从传统内容推荐、协同过滤到FM模型再到评价指标与深度学习应用。
√ 珍:解密设计推荐系统不可或缺又不可多得一手资料,如信息流内在逻辑|典型工程架构|内部模块细节。
本书是一本关于推荐系统产品如何落地的综合图书,内容覆盖产品、算法、工程、团队和个人成长。书中不仅梳理了从事推荐系统工作需要具备的思维模式和需要了解的问题类型,还从产品和商业角度分析了当前*火爆的信息流内在逻辑。本书用非常通俗易懂的方式介绍了推荐系统的经典算法原理,并有相应的配套实践代码,以帮助初入门的算法工程师快速上手。除了推荐算法,书中还包含一些不属于推荐算法但是很常见的实用算法。除算法原理之外,还有典型的工程架构描述,以及架构内部的具体模块细节描述。这些都是在设计推荐系统的过程中不可或缺而又不容易在公开场合获得的内容。此外,本书还涉及一部分推荐系统安全相关的知识,以及团队搭建经验和个人成长心得。本书适合以推荐系统为代表的效果类产品从业者阅读,包括决策者,以及产品、算法、架构、安全、运营人员。这是一本可以架起不同工种之间友好沟通桥梁的书。
陈开江,偶以“刑无刀”的名义“出没江湖”,初于北京理工大学学习自然语言处理,先后任职于新浪微博、车语传媒、贝壳找房等公司,做自然语言处理及推荐系统开发等工作,也曾有两三年与推荐系统有关的创业经验。有译著《机器学习:实用案例解析》,在公众号ResysChina上发表过推荐系统系列文章,在极客时间开设有《推荐系统36式》付费专栏。