本篇主要提供Python深度学习:模型、方法与实现电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
为了构建稳健的深度学习系统,需要理解神经网络的工作原理以及如何训练CNN模型等知识。通过本书,你可以探索新开发的深度学习模型及其在各个领域的使用方法,以及基于应用领域的实现。
本书首先介绍构建模块和神经网络背后的数学知识,然后介绍CNN及其在计算机视觉领域的先进应用,以及在对象检测和图像分割中应用流行的CNN架构。还将介绍变分自编码器和GAN,以及如何使用神经网络来提取单词的复杂向量表示。在继续讨论各种类型的循环网络(如LSTM和GRU)之前,会介绍如何在没有RNN的情况下使用注意力机制处理序列数据。然后,介绍如何使用图神经网络处理结构化数据,以及如何使用元学习采用较少的训练样本来训练神经网络。后,了解如何将深度学习应用于自动驾驶汽车。
阅读本书,你将掌握关键的深度学习概念和深度学习模型在现实世界中的不同应用。你将学到:
·先进的神经网络架构。
·神经网络背后的理论和数学知识。
·训练DNN并将其应用于现代深度学习问题。
·使用CNN进行对象检测和图像分割。
·实现GAN和变分自编码器来产生 新图像。
·使用seq2seq模型解决NLP任务,如机器翻译。
·了解DL技术,如元学习和图神经网络。
本书集合了基于应用领域的高级深度学习的模型、方法和实现。本书分为四部分。第1部分介绍了深度学习的构建和神经网络背后的数学知识。第二部分讨论深度学习在计算机视觉领域的应用。第三部分阐述了自然语言和序列处理。讲解了使用神经网络提取复杂的单词向量表示。讨论了各种类型的循环网络,如长短期记忆网络和门控循环单元网络。第四部分介绍一些虽然还没有被广泛采用但有前途的深度学习技术,包括如何在自动驾驶上应用深度学习。学完本书,读者将掌握与深度学习相关的关键概念,学会如何使用TensorFlow和PyTorch实现相应的AI解决方案。