本篇主要提供自然语言处理实战:从入门到项目实践电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
许多介绍自然语言处理(NLP)的书通过精心设计的示例和定义良好的数据集来展示如何解决NLP问题。但是,构建生产级NLP系统不能仅靠纸上谈兵。如果你想跨越理论与实践的鸿沟,在真实的业务环境中构建、迭代和扩展NLP系统,那么这就是为你而写的指南。
本书凝集了作者在微软、谷歌等头部公司的实践经验,详细阐释了NLP在文本分类、信息提取、聊天机器人、搜索和信息检索、主题建模、文本摘要、文本推荐、机器翻译、问答系统等常见场景中的应用,内容覆盖电商、社交媒体、医疗、金融、法律等垂直应用领域。通过阅读本书,你将为从0到1开发切实可用的NLP系统奠定牢固的知识基础。
本书以实际业务场景为例,介绍自然语言处理(NLP)系统开发项目的整个生命周期——从收集数据到部署和监控模型。读者将深入理解NLP系统的开发流程,知道如何消除开发痛点,从算法、数据等方面提高NLP系统的质量。全书分为四大部分,共有11章。第一部分概述NLP技术,为全书奠定知识基础。第二部分从实战角度讲解NLP系统的开发要点,内容涉及文本分类、信息提取等。第三部分专注于NLP重点应用的垂直领域:社交媒体、电子商务、医疗行业、金融业等,并辅以Python示例。第四部分将所有知识点融会贯通,并讲解如何利用所学知识部署NLP系统。
【作者简介】
索米亚.瓦贾拉(Sowmya Vajjala)拥有德国图宾根大学计算语言学博士学位,曾就职于微软研究院,拥有跨学术界和工业界的自然语言处理经验。
博迪萨特瓦.马祖达尔(Bodhisattwa Majumder)曾在谷歌和微软研究院构建自然语言处理系统,为数百万用户提供产品服务。
阿努杰.古普塔(Anuj Gupta)为《财富》100强公司和多家创业公司孵化和组建了机器学习团队。
哈尔希特.苏拉纳(Harshit Surana)是DeepFlux公司的联合创始人兼CTO,曾在卡内基–梅隆大学和麻省理工学院媒体实验室研究自然语言处理和机器学习。
【译者简介】
吴进操
近十年语言信息处理经验,曾深度参与企业级翻译系统的研发,熟练掌握Python,对自然语言与人工智能的结合有深刻认识。
黄若星
字节跳动AML团队早期成员,曾参与字节跳动机器学习平台及联邦学习框架Fedlearner的研发,热衷于人工智能在工业界的应用与实践。