本篇主要提供R语言机器学习实战电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
一、用R语言直观揭示机器学习技术
1)机器学习和数据分析已经成为创造价值的重要途径。
通过机器学习,你可以发现数据中隐藏的模式,从而产生新的想法和见解,如果没有这种强大的技术,这些都无从谈起。
2)R语言易于理解,专门为统计分析而构建。
本书介绍了使用R语言处理大型数据集的具体操作,展示了数据科学家如何将机器学习付诸实践,帮助你洞察业务本质,做出可靠的预测和更好的决策。
3)提供机器学习的概念和技术介绍,示例练习巩固基础,轻松理解。
书中的示例和练习使用R语言和新型数据分析工具,即使你没有编程经验也可以轻松学会,不会被复杂的数学知识困扰。有了这本书,机器学习的热门技术——从logistic回归到关联规则和聚类——你均能触手可及。
二、本书将机器学习的直观介绍与逐步的技术讲解相结合,其主要内容如下:
理解不同类型的机器学习算法;
发现大型数据集中存在的模式;
用RStudio编写和执行R脚本;
将R与tidyverse一起使用来管理和可视化数据;
应用核心的统计技术,如logistic回归和朴素贝叶斯等;
评估和改进机器学习模型;
本书探讨了如何使用 R 语言进行机器学习,涵盖基本的原理和方法,并通过大量的示例和练习,让读者掌握 R 语言的数据处理技巧。本书包括入门、回归、分类、模型的评估和改进、无监督学习五大部分,涉及线性回归、logistic 回归、k 近邻、朴素贝叶斯、决策树、聚类和关联规则等机器学习模型。本书配套提供相关的代码和数据,方便读者学习和使用。本书适合 R 语言和机器学习的爱好者、从业者以及相关院校的师生选用。
弗雷德.恩旺加(Fred Nwanganga)博士,美国圣母大学门多萨商学院商业分析专业助理教授,拥有超过15年的技术领导经验。
迈克.查普尔(Mike Chapple)博士,美国圣母大学门多萨商学院信息技术、分析和运营系副教授,目前担任该大学商业分析硕士项目的学术主任,出版了20多种书籍。