《Python机器学习项目实战》[79M]百度网盘|pdf下载|亲测有效
《Python机器学习项目实战》[79M]百度网盘|pdf下载|亲测有效

Python机器学习项目实战 pdf下载

出版社 清华大学出版社京东自营官方旗舰店
出版年 2023-03
页数 390页
装帧 精装
评分 8.8(豆瓣)
8.99¥ 10.99¥

内容简介

本篇主要提供Python机器学习项目实战电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com

内容简介

  《Python机器学习项目实战》带领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。《Python机器学习项目实战》完全满足这三点!
  《Python机器学习项目实战》展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关键概念。在学习《Python机器学习项目实战》的过程中,读者将会完成一些引人入胜的项目,比如使用线性回归预测汽车价格,部署客户流失预测服务等。读者将超出算法,学习在无服务器系统上部署机器学习应用,以及使用Kubernetes和Kubeflow服务模型等重要技术。大家埋头苦学,亲自动手,享受掌握机器学习技能的乐趣!
  主要内容:
  收集和清理训练模型的数据
  使用流行的Python工具,包括NumPy、Scikit-Learn和TensorFlow
  将机器学习模型部署到生产环境中
  阅读门槛
  读者需要有Python编程技能,不需要具备机器学习知识。

作者简介

Alexey Grigorev与家人居住在柏林。他是一名经验丰富的软件工程师,专注于机器学习。他在OLX集团担任首席数据科学家,帮助同事们将机器学习应用于生产。

工作之余,Alexey还运营着DataTalks.Club——一个由喜欢数据科学和机器学习的爱好者组成的社区。他还出版过另外两本著作:Mastering Java for Data Science和TensorFlow Deep Learning Projects。


内页插图

精彩书评

  ★一本有用的书籍,通俗易懂,列举大量实用的示例。
  我此前买过好几本机器学习书籍,但心中的疑团并未消失,愁肠百转。本书的出现令我眼前一亮,茅塞顿开。本书是我迄今为止读到的作品!我是一个实用型学习者,希望先找准前进方向,然后奋力前行;Alexey就是这么做的,是我的知音。
  在此强烈推荐本书。
  ——Amazon Customer
  
  ★讲解细腻,令我陶醉!
  非常棒的书!Alexey以非常详细和简洁的方式传授机器学习知识。我对机器学习很感兴趣,也在YouTube上关注Alexey的Zoomcamp。
  感谢Alexey为我们提供了如此精彩的内容!
  ——Humberto

目录

第1章 机器学习简介
1.1 机器学习
1.1.1 机器学习与基于规则的方法
1.1.2 当机器学习不起作用时
1.1.3 监督机器学习
1.2 机器学习过程
1.2.1 问题理解
1.2.2 数据理解
1.2.3 数据准备
1.2.4 建模
1.2.5 评估
1.2.6 部署
1.2.7 迭代
1.3 建模和模型验证
1.4 本章小结

第2章 用于回归的机器学习
2.1 汽车价格预测项目
2.2 探索性数据分析
2.2.1 探索性数据分析工具箱
2.2.2 读取和准备数据
2.2.3 目标变量分析
2.2.4 检查缺失值
2.2.5 验证框架
2.3 机器学习之回归
2.3.1 线性回归
2.3.2 训练线性回归模型
2.4 预测价格
2.4.1 基本解决方案
2.4.2 RMSE:评估模型质量
2.4.3 验证模型
2.4.4 简单的特征工程
2.4.5 处理分类变量
2.4.6 正则化
2.4.7 使用模型
2.5 后续步骤
2.5.1 练习
2.5.2 其他项目
2.6 本章小结
2.7 习题答案

第3章 用于分类的机器学习
3.1 客户流失预测项目
3.1.1 电信客户流失数据集
3.1.2 初始数据准备
3.1.3 探索性数据分析
3.1.4 特征重要性
3.2 特征工程
3.3 机器学习之分类
3.3.1 逻辑回归
3.3 2训练逻辑回归
3.3.3 模型解释
3.3.4 使用模型
3.4 后续步骤
3.4.1 练习
3.4.2 其他项目
3.5 本章小结
3.6 习题答案

第4章 分类的评估指标
4.1 评估指标
4.1.1 分类准确度
4.1.2 虚拟基线
4.2 混淆矩阵
4.2.1 混淆矩阵介绍
4.2.2 用NumPy计算混淆矩阵
4.2.3 查准率和查全率
4.3 ROC曲线和AUC分数
4.3.1 真正例率和假正例率
4.3.2 在多个阈值下评估模型
4.3.3 随机基线模型
4.3.4 理想模型
4.3.5 ROC曲线
4.3.6 AUC
4.4 参数调优
4.4.1 K折交叉验证
4.4.2 寻找最佳参数
4.5 后续步骤
4.5.1 练习
4.5.2 其他项目
4.6 本章小结
4.7 习题答案

第5章 部署机器学习模型
5.1 客户流失预测模型
5.1.1 使用模型
5.1.2 使用Pickle保存和加载模型
5.2 模型服务化
5.2.1 Web服务
5.2.2 Flask
5.2.3 使用Flask将流失模型服务化
5.3 管理依赖项
5.3.1 Pipenv
5.3.2 Docker
5.4 部署
5.5 后续步骤
5.5.1 练习
5.5.2 其他项目
5.6 本章小结

第6章 决策树与集成学习
6.1 信用风险评分项目
6.1.1 信用评分数据集
6.1.2 数据清理
6.1.3 准备数据集
6.2 决策树
6.2.1 决策树分类器
6.2.2 决策树学习算法
6.2.3 决策树的参数调优
6.3 随机森林
6.3.1 训练随机森林
6.3.2 随机森林的参数调优
6.4 梯度提升
6.4.1 XGBoost:极限梯度提升
6.4.2 模型性能监控
6.4.3 XGBoost的参数调优
6.4.4 测试最终模型
6.5 后续步骤
6.5.1 练习
6.5.2 其他项目
6.6 本章小结
6.7 习题答案
……

第7章 神经网络与深度学习
第8章 无服务器深度学习
第9章 使用Kubemetes和Kubeflow将模型服务化

附录

前言/序言

前 言




本书读者对象

本书是为能够编程并能快速掌握Python基本知识的人编写的。读者不需要有任何机器学习的经验。理想读者是愿意从事机器学习工作的软件工程师。然而,需要为学习和业余项目编写代码的积极向上的大学生阅读本书后同样会受益匪浅。

此外,那些已经在使用机器学习但想了解更多的人也会发现本书很有帮助。许多已经担任数据科学家和数据分析师的人都表示,本书对他们很有帮助,特别是关于部署的章节。

本书组织结构

本书一共包含9章内容,共研究了4个不同的项目。

● 第1章讨论传统软件工程与机器学习的区别;介绍组织机器学习项目的过程,涵盖从最初了解业务需求到最后部署模型的步骤;还详细地介绍过程中的建模步骤并讨论应该如何评估模型和选择最好的模型。为说明该章中的概念,运用了垃圾邮件检测案例。

● 第2章给出第一个项目——预测一辆汽车的价格。我们将学习如何对其使用线性回归。首先准备一个数据集并做一些数据清理。接下来,进行探索性数据分析,以更好地理解数据。然后用NumPy建立一个线性回归模型,以了解机器学习模型内部运转机制。最后讨论正则化和模型质量评估等话题。

● 第3章解决客户流失预测问题。该章假设我们在一家电信公司工作,想要确定哪些客户可能很快停止使用我们的服务。这是一个用逻辑回归来解决的分类问题。我们从特征重要性分析入手,了解哪些因素对这个问题最为重要。然后讨论作为处理分类变量(性别、合同类型等因素)方式的独热编码。最后,用Scikit-Learn训练一个逻辑回归模型,以了解哪些客户即将流失。

● 第4章采用第3章建立的模型并对其性能进行评估。该章涵盖最重要的分类评估指标:准确度、查准率和查全率。我们讨论了混淆矩阵,然后具体讲述ROC分析和AUC计算。该章最后讨论K折交叉验证。

● 第5章将客户流失预测模型作为一个Web服务进行部署。这是整个过程中的一个重要步骤,因为如果不使模型变得可用,那么它对任何人都没有用处。首先介绍用于创建Web服务的Python框架Flask。然后用Pipenv和Docker进行依赖项管理并在AWS上完成服务的部署。

● 第6章介绍一个关于风险评分的项目。我们想了解银行的客户是否会有还贷问题。为此,我们学习决策树的工作原理并用Scikit-learn训练一个简单的模型。然后,转向更复杂的基于树的模型,如随机森林和梯度提升。

● 第7章构建一个图像分类项目。我们将训练一个模型,将服装图像分为T恤、衣服、裤子等10个类别。我们使用TensorFlow和Keras来训练模型,此外介绍迁移学习的内容,因为它能够用相对较小的数据集训练模型。

● 第8章采用第7章中训练的服装分类模型,并且用TensorFlow Lite和AWS Lambda进行部署。

● 第9章部署服装分类模型,但在第一部分使用Kubernetes和TensorFlow Serving,在第二部分使用Kubeflow和Kubeflow Serving。

为帮助你更好地阅读本书以及了解Python和它的库,我们提供了5个附录。

● 附录A介绍如何设置针对本书的环境,展示如何安装Anaconda和Python、如何运行Jupyter Notebook、如何安装Docker以及如何创建AWS账户。

● 附录B介绍Python的基础知识。

● 附录C涵盖NumPy的基本知识,并且简要介绍机器学习所需的最重要的线性代数概念:矩阵乘法和矩阵求逆。

● 附录D介绍Pandas。

● 附录E解释如何在AWS SageMaker上获得带有GPU的Jupyter Notebook。

这些附录是选读的,但它们都很有帮助,尤其是若你之前没使用过Python或AWS。

你不必从头至尾地阅读本书。为帮助你导航,可以使用下列指南。

其中第2、3章的内容最重要,其余章节的内容都基于这两章。阅读完第2、3章的内容后,可以跳到第5章学习模型部署、到第6章学习基于树的模型或者到第7章学习图像分类。第4章讲解的评估指标基于第3章的内容:评估第3章的客户流失预测模型的质量。第8、9章将部署图像分类模型,因此在此之前先阅读第7章是很有帮助的。

每一章几乎都包括练习。做这些练习很重要,它们会帮助你更好地记住相关内容。