本篇主要提供SAP实用数据科学计算机与互联网电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
商品基本信息,请以下列介绍为准 | |
商品名称: | SAP实用数据科学 |
作者: | Greg |
定价: | 99.0 |
出版社: | 东南大学出版社 |
出版日期: | 2020-06-01 |
ISBN: | 9787564188818 |
印次: | |
版次: | 1 |
装帧: | |
开本: | 24开 |
内容简介 | |
你是否正在使用SAP ERP系统并迫切希望释放其数据的巨大价值?通过这本实用指导书,SAP专家Greg Foss和Paul Merman为你展示如何使用若干数据分析工具来解决SAP数据中存在的有趣问题。你将跟随一个贯穿全书的虚构公司,学会处理真实场景中遇到的问题。 使用真实数据创建示例代码和可视化图,SAP业务分析师将学会实用的分析方法,从而获得对业务数据的更深入了解。数据工程师和数据科学家将探索如何将SAP数据添加到他们的分析过程中。通过对SAP流程和数据科学工具的深入研究,你将找到揭露数据的强大方法。 |
目录 | |
Preface 1. Introduction Telling Better Stories with Data A Quick Look: Data Science for SAP Professionalr>A Quick Look: SAP Basics for Data Scientistr>Getting Data Out of SAP Roles and Responilitier>Summary 2. Data Science for SAP Professionalr>Machine Learning Supervised Machine Learning Unsupervised Machine Learning Semi-Supervised Machine Learning Reinforcement Macl'rine Learning Neural Networkr>Summary 3. SAP for Data Scientistr>Getting Started with SAP The ABAP Data Dictionary Tabler>Structurer>Data Elements and Domainr>Where-Used ABAP QuickViewer SE16 Export OData Servicer>Core Data Servicer>Summary 4. Exploratory Data Analysis with R The Four Phases of EDA Phase 1: Collecting Our Data Importing with R Phase 2: Cleaning Our Data Null Removal Binary Indicatorr>Removing Extraneous Columnr>Whitespace Numberr>Phase 3: Analyzing Our Data DataExplorer Discrete Featurer>Continuous Featurer>Phase 4: Modeling Our Data TensorFlow and Kerar>Training and Testing Split Shaping and One-Hot Encoding Reciper>Preparing Data for the Neural Network Resultr>Summary 5. Anomaly Detection with R and Python Types of Anomalier>Tools in R AnomalyDetection Anomalize Getting the Data SAP ECC System SAP NetWeaver Gateway SQL Server Finding Anomalier>PowerBI and R PowerBI and Python Summary 6. Predictive Analytics in R and Python Predicting Sales in R Step 1: Identify Data Step 2: Gather Data Step 3: Explore Data Step 4: Model Data Step 5: Evaluate Model Predicting Sales in Python Step 1: Identify Data Step 2: Gather Data Step 3: Explore Data Step 4: Model Data Step 5: Evaluate Model Summary 7. Clustering and Segmentation in R Understanding Clustering and Segmentation RFM Pareto Principle k-Meanr>k-Medoid Hierarchical Clustering Time-Series Clustering Step 1: Collecting the Data Step 2: Cleaning the Data Step 3: Analyzing the Data Revisiting the Pareto Principle Finding Optimal Clusterr>k-Means Clustering k-Medoid Clustering Hierarchical Clustering Manual RFM Step 4: Report the Findingr>R Markdown Code R Markdown Knit Summary 8. Association Rule Mining Understanding Association Rule Mining Support Confidence Lift Apriori Algorithm Operationalization Overview Collecting the Data Cleaning the Data Analyzing the Data Fiori Summary 9. Natural Language Processing with the Google Cloud Natural Language API Understanding Natural Language Processing Sentiment Analysir>Translation Preparing the Cloud API Collecting the Data Analyzing the Data Summary 10. Conclusion Original Mission Recap Chapter 1: Introduction Chapter 2: Data Science for SAP Professionalr>Chapter 3: SAP for Data Scientistr>Chapter 4: Exploratory Data Analysir>Chapter 5: Anomaly Detection with R and Python Chapter 6: Prediction with R Chapter 7: Clustering and Segmentation in R Chapter 8: Association Rule Mining Chapter 9: Natural Language Processing with the Google Cloud Natural Language API Tips and Recommendationr>Be Creative Be Practical Enjoy the Ride Stay in Touch Index |