本篇主要提供R数据科学实战电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com
在《R数据科学实战》(第2版)这本书中,作者用了一些篇幅描述了什么是数据科学、数据科学家是如何解决问题的,以及对他们工作的描述。其中,包括对经典监督学习方法(如线性回归和逻辑回归)的详细描述。我们喜欢本书的调研式风格,以及使用的大量的竞赛获奖方法和程序包的示例(如随机森林和xgboost)。本书涵盖了非常有用的、可共享的经验和实践建议。我们注意到,在本书中甚至包括了我们自己使用过的一-些技巧,例如使用随机森林变量重要性进行初始变量的筛选。
有依据的决策对于成功至关重要。将正确的数据分析技术应用到精心筹备的业务数据中有助于做出准确预测、确定趋势,以及提前发现问题。R数据分析平台提供了许多高效率的工具,可用来处理日常的数据分析和机器学习任务。
《R数据科学实战》(第2版)是一本基于任务的教程,引导读者使用R语言参与几十个实用的数据分析实践。本书重点介绍读者在工作中将面临的最重要任务,对于商业分析师和数据科学家来说都非常实用。因为数据只有在可理解的情况下才有用,所以读者也可以在表格中找到组织和展示数据的妙招,以及快速生动的可视化效果。
尼娜·祖梅尔(Nina Zumel)曾在一家独立的、非营利性研究机构SRI International担任科学家。她曾在一家价格优化公司担任首席科学家,并创办了一家合同研究公司。Nina现在是Win-VectorLLC的首席顾问。读者可以通过nzumel@win-vector.com联系她。
《R数据科学实战(第2版)》是我们在自学时所希望拥有的书,它所汇集的主题和技能被称为数据科学。《R数据科学实战(第2版)》也是我们想分发给客户和同行的书。它的目的是解释统计学、计算机科学和机器学习等学科中对数据科学至关重要的内容。
数据科学利用了来自经验科学、统计学、报表技术、分析技术、可视化技术、商业智能、专家系统、机器学习、数据库、数据仓库、数据挖掘和大数据技术的各种工具。正是因为我们有太多的工具,所以需要一个涵盖所有工具的指导原则。数据科学本身与这些工具和技术的区别就在于数据科学的中心目标是将有效的决策模型部署到生产环境中。
我们的目标是从务实的、面向实践的角度来展示数据科学。我们通过聚焦在完全成功的真实数据上的示例来实现这一目标,《R数据科学实战(第2版)》展示了超过10个重要的数据集。我们认为这种方法能举例说明我们真正想要达到的教学目标,并能演示实际项目中所需要的各种准备步骤。
在《R数据科学实战(第2版)》中,我们讨论了实用的统计学和机器学习的概念,包括具体的代码示例,并探索了与非专业人员的合作和沟通方式。如果你觉得这些话题中没有新颖的主题,那么我们希望《R数据科学实战(第2版)》内容能为你最近没有想到的其他一两个话题提供一些启示。