《全新深度学习理论及实战》[87M]百度网盘|pdf下载|亲测有效
《全新深度学习理论及实战》[87M]百度网盘|pdf下载|亲测有效

全新深度学习理论及实战 pdf下载

出版社 爱新图书专营店
出版年 2021-02
页数 390页
装帧 精装
评分 9.2(豆瓣)
8.99¥ 10.99¥

内容简介

本篇主要提供全新深度学习理论及实战电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com

  • 作者:赵小川,何灏
  • 著:赵小川,何灏
  • 装帧:平装
  • 印次:1
  • 定价:79.00
  • ISBN:9787302564218
  • 出版社:清华大学出版社
  • 开本:32开
  • 印刷时间:暂无
  • 语种:暂无
  • 出版时间:2021-02-01
  • 页数:472
  • 外部编号:1202301661
  • 版次:1

章从“机器学习”讲起
1.1走近“机器学习”
1.1.1什么是“机器学习”
1.1.2机器学习的主要任务
1.1.3机器学习的分类
1.1.4什么是“深度学习”
1.1.5机器学习的应用举例
扩展阅读:对“人工智能”的理解
1.2解读“机器学习的过程”
1.2.1机器学习的过程
1.2.2机器学习中的数据集
1.2.3过拟合与欠拟合
心得分享:“机器学习”与“雕刻时光”
1.3典型的机器学习算法——SVM
1.3.1从“走心”的国界线说起
1.3.2“支持向量机”名字的由来
1.3.3SVM分类器的形式
1.3.4如何找到分类线
1.3.5基于SVM的多分类问题
1.4思考与练习
第2章解析“人工神经网络”
2.1神经元——人工神经网络的基础
2.1.1生物神经元
2.1.2人工神经元
2.1.3激活函数
2.2神经网络的结构及工作原理
2.2.1神经网络的结构组成
2.2.2神经网络的工作原理
2.2.3一些常见的概念
扩展阅读:人工神经网络发展简史
2.3从数学角度来认识神经网络
2.3.1本书中采用的符号及含义
2.3.2神经元的激活
2.3.3神经网络的学习
2.3.4寻找损失函数值——梯度下降法
2.3.5误差反向传播
2.3.6基于误差反向传播的参数更新流程
2.4如何基于神经网络进行分类
2.4.1基于神经网络实现二分类
2.4.2基于神经网络实现多分类
扩展阅读:交熵 2.5思考与练习
第3章探索“卷积神经网络”
3.1深入浅出话“卷积”
3.1.1卷积的运算过程
3.1.2卷积核对输出结果的影响
3.1.3卷积运算在图像特征提取中的应用
扩展阅读:数字图像处理的基础知识
编程体验1:读入一幅数字图像并显示
编程体验2:基于MATLAB实现二维图像的滑动卷积
3.2解析“卷积神经网络”
3.2.1从ImageNet挑战赛说起
3.2.2卷积神经网络的结构
3.2.3卷积层的工作原理
3.2.4非线激活函数的工作原理
3.2.5池化层的工作原理
3.2.6卷积神经网络与全连接神经网络的区别
3.2.7从仿生学角度看卷积神经网络
扩展阅读:创建ImageNet挑战赛初衷
3.3从数学的角度看卷积神经网络
3.3.1本书中采用的符号及含义
3.3.2从数学角度看卷积神经网络的工作过程
3.3.3如何求代价函数
3.3.4采用误差反向传播法确定卷积神经网络的参数
3.4认识经典的“卷积神经网络”
3.4.1解析LeNet5卷积神经网络
3.4.2具有里程碑意义的AlexNet
3.4.3VGG-16卷积神经网络的结构和参数
3.4.4卷积神经网络为何会迅猛发展
3.5思考与练习
第4章基于MATLAB深度学习工具箱的实现与调试
4.1构造一个用于分类的卷积神经网络
4.1.1实例需求
4.1.2开发环境
4.1.3开发步骤
4.1.4常用的构卷积经网络的函数
4.1.5构卷积经网络
4.1.6程序实现
扩展阅读:批量归一化层的作用
编程体验:改变卷积神经网络的结构
4.2训练一个用于预测的卷积神经网络
4.2.1实例需求
4.2.2开发步骤
4.2.3构建卷积神经网络
4.2.4训练卷积神经网络
4.2.5程序实现
扩展阅读1:设置学习率的经验与技巧
扩展阅读2:随机失活方法(dropout)的作用
扩展阅读3:小批量方法(minibatch)的作用
编程体验:改变网络训练配置参数
4.3采用迁移学习进行物体识别
4.3.1站在巨人的肩膀上——“迁移学习”
4.3.2实例需求
4.3.3开发步骤
4.3.4加载训练好的网络
4.3.5如何对网络结构和样本进行微调
4.3.6函数解析
4.3.7程序实现及运行效果
扩展阅读:多角度看“迁移学习”
4.4采用DeepNetworkDesigner实现卷积网络设计
4.4.1什么是DeepNetworkDesigner
4.4.2如何打开DeepNetworkDesigner
4.4.3需求实例
4.4.4在DeepNetworkDesigner中构建卷积神经网络
4.4.5对网络进行训练与验
4.4.6DeepNetworkDesigner的检验功能
4.5采用DeepNetworkDesigner实现迁移学习
4.5.1基于DeepNetworkDesigner的网络结构调整
4.5.2对网络进行训练
4.6如何显示、分析卷积神经网络
4.6.1如何查看训练好的网络的结构和信息
4.6.2如何画出深度网络的结构图
4.6.3如何用analyzeNetwork函数查看与分析网络
4.7如何加载深度学习工具箱可用的数据集
4.7.1如何加载MATLAB自带的数据集
4.7.2如何加载自己制作的数据集
4.7.3如何加载网络下载的数据集——以CIFAR-10为例
4.7.4如何划分训练集与测试集
编程体验1:基于CIFAR-10数据集训练卷积神经网络
4.8如何构造一个具有捷径连接的卷积神经网络
4.8.1本节用到的函数
4.8.2实例需求
4.8.3创建含有捷径连接的卷积神经网络的实现步骤
4.8.4程序实现
4.8.5对捷径连接网络进行结构检查
编程体验:采用例程4.8.2所构建的卷积神经网络进行图像分类
4.9思考与练习
第5章应用案例深度解析
5.1基于卷积神经网络的图像分类
5.1.1什么是图像分类
5.1.2评价分类的指标
5.1.3基于深度学习和数据驱动的图像分类
5.1.4传统的图像分类与基于深度学习的图像分类的区别
5.1.5基于AlexNet的图像分类
5.1.6基于GoogLeNet的图像分类
5.1.7基于卷积神经网络的图像分类抗干扰分析
扩展阅读:计算机视觉的发展之路
编程体验:体验GoogLeNet识别图像的抗噪声能力
5.2基于LeNet卷积神经网络的交通灯识别
5.2.1实例需求
5.2.2卷积神经网络设计
5.2.3加载交通灯数据集
5.2.4程序实现
5.3融合卷积神经网络与支持向量机的图像分类
5.3.1整体思路
5.3.2本节所用到的函数
5.3.3实现步骤与程序
编程体验:基于AlexNet和SVM的图像分类
5.4基于R-CNN的交通标志检测
5.4.1目标分类、检测与分割
5.4.2目标检测及其难点问题
5.4.3R-CNN目标检测算法的原理及实现过程
5.4.4实例需求
5.4.5实现步骤
5.4.6本节所用到的函数
5.4.7程序实现
5.4.8基于AlexNet迁移学习的R-CNN实现
5.4.9基于ImageLabeler的R-CNN目标检测器构建
5.5基于VideoLabeler与R-CNN的车辆检测
5.5.1实例需求
5.5.2实现步骤
5.6思考与练习
参考文献

赵小川男,博士,研究员,博士生导师。武警装备智能化专家委员会委员,北京市科学技术委员会项目评审专家,陆军装备部项目评审专家;中文核心期刊《计算机工程》青年编委;期刊Robotica审稿专家。研究方向是人工智能、计算机视觉。近年来,作为项目负责人主持科研项目20余项,以作者出版学术专著6部,获得发明12项。

"《深度学习理论及实战(MATLAB版)》力图做到深入浅出,尽量用通俗易懂的语言、实用生动的案例把理论与方法讲清楚、说明白。“深度卷积神经网络”是模仿大脑工作机理的一种智能系统,书中以“系统角度”→“数学角度”→“仿生角度”为主线,对相关知识进行讲解。 《深度学习理论及实战(MATLAB版)》添加了“温馨提示”“经验分享”“心得分享”等版块,且对书中讲解的30个程序都做了详细的注释,对操作中可能存在的问题也一一进行了提示。通过本书传递作者“授人以渔”和“持续学习”的人生态度,更加注重对方法、过程中的讲解,希望读者在实际应用中能够触类旁通、举一反三。 "